文章詳情
OTDR原理是什麼?
日期:2025-05-03 11:08
瀏覽次數:3552
摘要:
為了確保服務質量 (QoS),網絡構建商、服務提供商和運營商需要**地定位現有和潛在問題,這使得測試與測量設備至關重要。有許多測試工具可用於在網絡的不同階段,滿足不同的測試需求,比如光纖試運行。這些測試用於揭示總損耗、光回損 (ORL) 和光纖長度,可以在單根光纖上或在完整網絡上執行。此外,可能需要對組成被測鏈路的不同元素進行進一步檢查。不論是鑒定鏈路中每個元件的特性,定位光纖的潛在問題,還是查找網絡中的故障,都不可避免地要使用光時域反射儀 (OTDR) — 從光網絡試運行到故障診斷和維護,OTDR 都是理想之選。本文介紹了 OTDR 的基本原理,對於理解該儀器的規格非常重要。OTDR原理是什麼?
什麼是 OTDR?
基礎

反射是關鍵
如前文所述,OTDR 通過讀取從所發送脈衝返回的光級彆以顯示鏈路情況。請注意,有兩種類型的反射光:光纖產生的連續低級彆光稱為 Rayleigh 背向散射,連接點處的高反射峰值稱為 Fresnel 反射。Rayleigh 背向散射用於作為距離的函數以計算光纖中的衰減級彆(單位是 dB/km),在 OTDR 軌跡中顯示為直線斜率。該現象來源於光纖內部雜質固有的反射和吸收。當光照射到雜質上時,一些雜質顆粒將光重定向到不同的方向,同時產生了信號衰減和背向散射。波長越長,衰減越少,因此,在標準光纖上傳輸相同距離所需的功率越小。圖 2 說明了 Rayleigh 背向散射。

OTDR 使用的**種反射(Fresnel 反射)可檢測鏈路沿線的物理事件。當光到達折射率突變的位置(比如從玻璃到空氣)時,很大一部分光被反射回去,產生 Fresnel 反射,它可能比 Rayleigh 背向散射強上千倍。Fresnel 反射可通過 OTDR 軌跡的尖峰來識彆。這樣的反射例子有連接器、機械接頭、光纖、光纖斷裂或打開的連接器。圖 3 說明了產生 Fresnel 反射的不同連接。

什麼是盲區?
Fresnel 反射引出一個重要的 OTDR 規格,即盲區。有兩類盲區:事件和衰減。兩種盲區都由 Fresnel 反射產生,用隨反射功率的不同而變化的距離(米)來表示。盲區定義為持續時間,在此期間檢測器受高強度反射光影響暫時“失明”,直到它恢複正常能夠重新讀取光信號為止,設想一下,當您夜間駕駛時與迎麵而來的車相遇,您的眼睛會短期失明。在 OTDR 領域裡,時間轉換為距離,因此,反射越多,檢測器恢複正常的時間越長,導致的盲區越長。絕大多數製造商以*短的可用脈衝寬度以及單模光纖 -45 dB、多模光纖 -35 dB 反射來指定盲區。為此,閱讀規格表的腳注很重要,因為製造商使用不同的測試條件測量盲區,尤其要注意脈衝寬度和反射值。例如,單模光纖 -55 dB 反射提供的盲區規格比使用 -45 dB 得到的盲區更短,僅僅因為 -55 dB 是更低的反射,檢測器恢複更快。此外,使用不同的方法計算距離也會得到一個比實際值更短的盲區。
事件盲區
事件盲區是 Fresnel 反射後 OTDR 可在其中檢測到另一個事件的*小距離。換而言之,是兩個反射事件之間所需的*小光纖長度。仍然以之前提到的開車為例,當您的眼睛由於對麵車的強光刺激睜不開時,過幾秒種後,您會發現路上有物體,但您不能正確識彆它。轉過頭來說 OTDR,可以檢測到連續事件,但不能測量出損耗(如圖 4 所示)。OTDR 合並連續事件,並對所有合並的事件返回一個全局反射和損耗。為了建立規格,*通用的業界方法是測量反射峰的每一側 -1.5 dB 處之間的距離(見圖 5)。還可以使用另外一個方法,即測量從事件開始直到反射級彆從其峰值下降到 -1.5 dB 處的距離。該方法返回一個更長的盲區,製造商較少使用。

圖 4. 合並長盲區事件
圖 5. 測量事件盲區
使得 OTDR 的事件盲區儘可能短是非常重要的,這樣才可以在鏈路上檢測相距很近的事件。例如,在建築物網絡中的測試要求 OTDR 的事件盲區很短,因為連接各種數據中心的光纖跳線非常短。如果盲區過長,一些連接器可能會被漏掉,技術人員無法識彆它們,這使得定位潛在問題的工作更加困難。
衰減盲區
衰減盲區是 Fresnel 反射之後,OTDR 能在其中**測量連續事件損耗的*小距離。還使用以上例子,經過較長時間後,您的眼睛充分恢複,能夠識彆並分析路上可能的物體的屬性。如圖 6 所示,檢測器有足夠的時間恢複,以使得其能夠檢測和測量連續事件損耗。所需的*小距離是從發生反射事件時開始,直到反射降低到光纖的背向散射級彆的 0.5 dB,如圖 7 所示。

圖 6. 衰減盲區
盲區的重要性
短衰減盲區使得 OTDR 不僅可以檢測連續事件,還能夠返回相距很近的事件損耗。例如,現在就可以得知網絡內短光纖跳線的損耗,這可以幫助技術人員清楚了解鏈路內的情況。
盲區也受其他因素影響:脈衝寬度。規格使用*短脈衝寬度是為了提供*短盲區。但是,盲區並不總是長度相同,隨著脈衝變寬,盲區也會拉伸。使用*長的可能的脈衝寬帶會導致特彆長的盲區,然而這有不同的用途,下文會提到。
動態範圍
動態範圍是一個重要的 OTDR 參數。此參數揭示了從 OTDR 端口的背向散射級彆下降到特定噪聲級彆時 OTDR 所能分析的*大光損耗。換句話說,這是*長的脈衝所能到達的*大光纖長度。因此,動態範圍(單位為 dB)越大,所能到達的距離越長。顯然,*大距離在不同的應用場合是不同的,因為被測鏈路的損耗不同。連接器、熔接和分光器也是降低 OTDR *大長度的因素。因此,在一個較長時段內進行平均並使用適當的距離範圍是增加*大可測量距離的關鍵。大多數動態範圍規格是使用*長脈衝寬度的三分鐘平均值、信噪比 (SNR)=1(均方根 (RMS) 噪聲值的平均級彆)而給定。再次請注意,仔細閱讀規格腳注標注的詳細測試條件非常重要。
憑經驗,我們建議選擇動態範圍比可能遇到的*大損耗高 5 到 8 dB 的 OTDR。例如,使用動態範圍是 35 dB 的單模 OTDR 就可以滿足動態範圍在 30 dB 左右的需要。假定在 1550 nm 上的典型光纖典型衰減為 0.20 dB/km,在每 2 公裡處熔接(每次熔接損耗 0.1 dB),這樣的一個設備可以**測算的距離*多 120 公裡。*大距離可以使用光纖衰減除 OTDR 的動態範圍而計算出近似值。這有助於確定使設備能夠達到光纖末端的動態範圍。請記住,網絡中損耗越多,需要的動態範圍越大。請注意,在 20 μ 指定的大動態範圍並不能確保在短脈衝時動態範圍也這麼大,過度的軌跡過濾可能人為誇大所有脈衝的動態範圍,導致**故障查找解決方案(在即將發表的下一篇文章中將對此進行深入探討)。
脈衝寬度
什麼是脈衝寬度?
脈衝寬度實際上是激光器“開啟”的時間。正如我們知道的,時間轉換為距離,因此脈衝寬度具有長度值。在 OTDR 中,脈衝攜帶的能量可以產生鑒定鏈路所需的背向散射。由於在鏈路中存在傳播損耗(即,衰減、連機器、熔接等),所以脈衝越短,攜帶的能量越少,傳播的距離就越短。長脈衝攜帶的能量高出很多,可以在非常長的光纖中使用。圖 8 說明了作為時間函數的脈衝寬度。

如果脈衝太短,在到達光纖末端前便丟失了能量,使背向散射級彆變得很低,甚至低於噪聲下限級彆而導致信息丟失。這樣會導致無法到達光纖末端。因此,由於返回的光纖距離末端遠短於實際的光纖長度,而無法測量完整鏈路。另一個現象是在接近光纖末端時軌跡中噪聲太多。OTDR 無法再進行信號分析,測量結果可能出錯。
處理脈衝寬度
當軌跡中噪聲太多,有兩種簡便方法獲得較清潔的軌跡。**種方法,增加取樣時間,這樣可以極大改善(增加)SNR,同時保持良好的短脈衝分辨率。但是,增加平均時間也有限度,因為這不能無限提高 SNR。如果軌跡還不夠平滑,我們可以使用**種方法,即使用下一個可用的更高脈衝(更多能量)。但是,請記住,盲區會隨著脈衝寬度的增加而變大。幸運的是,市場上絕大多數 OTDR 都有“自動”模式,可以為被測光纖選擇適當的脈衝寬度。當被測光纖長度或損耗未知時,使用該選項會非常方便。
當鑒定網絡或光纖特性時,強製要求為被測鏈路選擇正確脈衝寬度。短脈衝寬度、短盲區和低功率用於測試事件相距很近的短鏈路,而長脈衝、長盲區和高功率則用於到達遠程網絡或高損耗網絡中更遠的距離。
采樣分辨率和采樣點
OTDR 定位事件正確距離的能力依賴於不同參數組合,其中包括采樣分辨率和采樣點。采樣分辨率定義為“儀器所要求的兩個連續采樣點之間的*小距離”。此參數很重要,因為它定義了*終的距離精度以及 OTDR 故障查找的能力。根據選擇的脈衝寬度和距離範圍,該值變化範圍可為 4 厘米到幾米。因此,為了保持*佳分辨率,必須在取樣期間取得更多采樣點。圖 9a 和 9b 說明高分辨率在故障查找中所起的作用。

a) b)
結論
市場上有很多型號的 OTDR — 從基礎的故障尋找器到**儀器,可滿足不同的測試和測量需求。要在購買 OTDR 時做出正確的選擇,必須考慮基本參數。因為如果所選型號不適用於應用,那麼僅基於總體性能和價格去選擇設備將會出現問題。OTDR 具有複雜的規格,絕大多數都是折衷的結果。深入了解這些參數以及如何去驗證這些參數可以幫助購買者作出滿足其需求的正確選擇,*大化生產率和成本效益。維信儀器時刻準備著為您效勞!
什麼是 OTDR?
基礎

圖 1. OTDR 框圖
反射是關鍵
如前文所述,OTDR 通過讀取從所發送脈衝返回的光級彆以顯示鏈路情況。請注意,有兩種類型的反射光:光纖產生的連續低級彆光稱為 Rayleigh 背向散射,連接點處的高反射峰值稱為 Fresnel 反射。Rayleigh 背向散射用於作為距離的函數以計算光纖中的衰減級彆(單位是 dB/km),在 OTDR 軌跡中顯示為直線斜率。該現象來源於光纖內部雜質固有的反射和吸收。當光照射到雜質上時,一些雜質顆粒將光重定向到不同的方向,同時產生了信號衰減和背向散射。波長越長,衰減越少,因此,在標準光纖上傳輸相同距離所需的功率越小。圖 2 說明了 Rayleigh 背向散射。

圖 2. Rayleigh 背向散射
OTDR 使用的**種反射(Fresnel 反射)可檢測鏈路沿線的物理事件。當光到達折射率突變的位置(比如從玻璃到空氣)時,很大一部分光被反射回去,產生 Fresnel 反射,它可能比 Rayleigh 背向散射強上千倍。Fresnel 反射可通過 OTDR 軌跡的尖峰來識彆。這樣的反射例子有連接器、機械接頭、光纖、光纖斷裂或打開的連接器。圖 3 說明了產生 Fresnel 反射的不同連接。

圖 3. 由 (1) 機械接頭、(2) 光纖適配器和 (3) 打開的連接產生的 Fresnel 反射
什麼是盲區?
Fresnel 反射引出一個重要的 OTDR 規格,即盲區。有兩類盲區:事件和衰減。兩種盲區都由 Fresnel 反射產生,用隨反射功率的不同而變化的距離(米)來表示。盲區定義為持續時間,在此期間檢測器受高強度反射光影響暫時“失明”,直到它恢複正常能夠重新讀取光信號為止,設想一下,當您夜間駕駛時與迎麵而來的車相遇,您的眼睛會短期失明。在 OTDR 領域裡,時間轉換為距離,因此,反射越多,檢測器恢複正常的時間越長,導致的盲區越長。絕大多數製造商以*短的可用脈衝寬度以及單模光纖 -45 dB、多模光纖 -35 dB 反射來指定盲區。為此,閱讀規格表的腳注很重要,因為製造商使用不同的測試條件測量盲區,尤其要注意脈衝寬度和反射值。例如,單模光纖 -55 dB 反射提供的盲區規格比使用 -45 dB 得到的盲區更短,僅僅因為 -55 dB 是更低的反射,檢測器恢複更快。此外,使用不同的方法計算距離也會得到一個比實際值更短的盲區。
事件盲區
事件盲區是 Fresnel 反射後 OTDR 可在其中檢測到另一個事件的*小距離。換而言之,是兩個反射事件之間所需的*小光纖長度。仍然以之前提到的開車為例,當您的眼睛由於對麵車的強光刺激睜不開時,過幾秒種後,您會發現路上有物體,但您不能正確識彆它。轉過頭來說 OTDR,可以檢測到連續事件,但不能測量出損耗(如圖 4 所示)。OTDR 合並連續事件,並對所有合並的事件返回一個全局反射和損耗。為了建立規格,*通用的業界方法是測量反射峰的每一側 -1.5 dB 處之間的距離(見圖 5)。還可以使用另外一個方法,即測量從事件開始直到反射級彆從其峰值下降到 -1.5 dB 處的距離。該方法返回一個更長的盲區,製造商較少使用。

圖 4. 合並長盲區事件

圖 5. 測量事件盲區
使得 OTDR 的事件盲區儘可能短是非常重要的,這樣才可以在鏈路上檢測相距很近的事件。例如,在建築物網絡中的測試要求 OTDR 的事件盲區很短,因為連接各種數據中心的光纖跳線非常短。如果盲區過長,一些連接器可能會被漏掉,技術人員無法識彆它們,這使得定位潛在問題的工作更加困難。
衰減盲區
衰減盲區是 Fresnel 反射之後,OTDR 能在其中**測量連續事件損耗的*小距離。還使用以上例子,經過較長時間後,您的眼睛充分恢複,能夠識彆並分析路上可能的物體的屬性。如圖 6 所示,檢測器有足夠的時間恢複,以使得其能夠檢測和測量連續事件損耗。所需的*小距離是從發生反射事件時開始,直到反射降低到光纖的背向散射級彆的 0.5 dB,如圖 7 所示。

圖 6. 衰減盲區

圖 7. 測量衰減盲區
盲區的重要性
短衰減盲區使得 OTDR 不僅可以檢測連續事件,還能夠返回相距很近的事件損耗。例如,現在就可以得知網絡內短光纖跳線的損耗,這可以幫助技術人員清楚了解鏈路內的情況。
盲區也受其他因素影響:脈衝寬度。規格使用*短脈衝寬度是為了提供*短盲區。但是,盲區並不總是長度相同,隨著脈衝變寬,盲區也會拉伸。使用*長的可能的脈衝寬帶會導致特彆長的盲區,然而這有不同的用途,下文會提到。
動態範圍
動態範圍是一個重要的 OTDR 參數。此參數揭示了從 OTDR 端口的背向散射級彆下降到特定噪聲級彆時 OTDR 所能分析的*大光損耗。換句話說,這是*長的脈衝所能到達的*大光纖長度。因此,動態範圍(單位為 dB)越大,所能到達的距離越長。顯然,*大距離在不同的應用場合是不同的,因為被測鏈路的損耗不同。連接器、熔接和分光器也是降低 OTDR *大長度的因素。因此,在一個較長時段內進行平均並使用適當的距離範圍是增加*大可測量距離的關鍵。大多數動態範圍規格是使用*長脈衝寬度的三分鐘平均值、信噪比 (SNR)=1(均方根 (RMS) 噪聲值的平均級彆)而給定。再次請注意,仔細閱讀規格腳注標注的詳細測試條件非常重要。
憑經驗,我們建議選擇動態範圍比可能遇到的*大損耗高 5 到 8 dB 的 OTDR。例如,使用動態範圍是 35 dB 的單模 OTDR 就可以滿足動態範圍在 30 dB 左右的需要。假定在 1550 nm 上的典型光纖典型衰減為 0.20 dB/km,在每 2 公裡處熔接(每次熔接損耗 0.1 dB),這樣的一個設備可以**測算的距離*多 120 公裡。*大距離可以使用光纖衰減除 OTDR 的動態範圍而計算出近似值。這有助於確定使設備能夠達到光纖末端的動態範圍。請記住,網絡中損耗越多,需要的動態範圍越大。請注意,在 20 μ 指定的大動態範圍並不能確保在短脈衝時動態範圍也這麼大,過度的軌跡過濾可能人為誇大所有脈衝的動態範圍,導致**故障查找解決方案(在即將發表的下一篇文章中將對此進行深入探討)。
脈衝寬度
什麼是脈衝寬度?
脈衝寬度實際上是激光器“開啟”的時間。正如我們知道的,時間轉換為距離,因此脈衝寬度具有長度值。在 OTDR 中,脈衝攜帶的能量可以產生鑒定鏈路所需的背向散射。由於在鏈路中存在傳播損耗(即,衰減、連機器、熔接等),所以脈衝越短,攜帶的能量越少,傳播的距離就越短。長脈衝攜帶的能量高出很多,可以在非常長的光纖中使用。圖 8 說明了作為時間函數的脈衝寬度。

圖 8. 短脈衝與長脈衝
如果脈衝太短,在到達光纖末端前便丟失了能量,使背向散射級彆變得很低,甚至低於噪聲下限級彆而導致信息丟失。這樣會導致無法到達光纖末端。因此,由於返回的光纖距離末端遠短於實際的光纖長度,而無法測量完整鏈路。另一個現象是在接近光纖末端時軌跡中噪聲太多。OTDR 無法再進行信號分析,測量結果可能出錯。
處理脈衝寬度
當軌跡中噪聲太多,有兩種簡便方法獲得較清潔的軌跡。**種方法,增加取樣時間,這樣可以極大改善(增加)SNR,同時保持良好的短脈衝分辨率。但是,增加平均時間也有限度,因為這不能無限提高 SNR。如果軌跡還不夠平滑,我們可以使用**種方法,即使用下一個可用的更高脈衝(更多能量)。但是,請記住,盲區會隨著脈衝寬度的增加而變大。幸運的是,市場上絕大多數 OTDR 都有“自動”模式,可以為被測光纖選擇適當的脈衝寬度。當被測光纖長度或損耗未知時,使用該選項會非常方便。
當鑒定網絡或光纖特性時,強製要求為被測鏈路選擇正確脈衝寬度。短脈衝寬度、短盲區和低功率用於測試事件相距很近的短鏈路,而長脈衝、長盲區和高功率則用於到達遠程網絡或高損耗網絡中更遠的距離。
采樣分辨率和采樣點
OTDR 定位事件正確距離的能力依賴於不同參數組合,其中包括采樣分辨率和采樣點。采樣分辨率定義為“儀器所要求的兩個連續采樣點之間的*小距離”。此參數很重要,因為它定義了*終的距離精度以及 OTDR 故障查找的能力。根據選擇的脈衝寬度和距離範圍,該值變化範圍可為 4 厘米到幾米。因此,為了保持*佳分辨率,必須在取樣期間取得更多采樣點。圖 9a 和 9b 說明高分辨率在故障查找中所起的作用。

a) b)
圖 9:分辨率與故障查找效率:(a) 5 米分辨率(較高分辨率)。(b) 15 米分辨率(較低分辨率)。
如上所示,采樣點越多,分辨率越高(采樣點之間距離短),這是故障查找的**條件。
如上所示,采樣點越多,分辨率越高(采樣點之間距離短),這是故障查找的**條件。
結論
市場上有很多型號的 OTDR — 從基礎的故障尋找器到**儀器,可滿足不同的測試和測量需求。要在購買 OTDR 時做出正確的選擇,必須考慮基本參數。因為如果所選型號不適用於應用,那麼僅基於總體性能和價格去選擇設備將會出現問題。OTDR 具有複雜的規格,絕大多數都是折衷的結果。深入了解這些參數以及如何去驗證這些參數可以幫助購買者作出滿足其需求的正確選擇,*大化生產率和成本效益。維信儀器時刻準備著為您效勞!